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The finite-size scaling algorithm based on bulk and surface renormalization of 
de Oliveira is tested on q-state Potts models in dimensions D = 2 and 3. Our 
Monte Carlo data clearly distinguish between first- and second-order phase 
transitions. Continuous-q analytic calculations performed for small lattices show 
a clear tendency of the magnetic exponent ~J = D -  fl/v to reach a plateau for 
increasing values of q, which is consistent with the first-order transition value 
~J = D. Monte Carlo data confirm this trend. 
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1. I N T R O D U C T I O N  

A new type of  r en o rma l i za t i o n  or  finite-size scaling a lgor i thm was 
p roposed  some t ime ago t~ a n d  tested on  a var ie ty  of  mode lsJ  2~ F o r  spin-  
1/2 Is ing models ,  it is based  on  a ma jo r i ty  rule for ei ther  all spins of  the 
system or  the spins on  two opposi te-surfaces  of the finite system u n d e r  con-  
s iderat ion.  Basically, the surface cr i ter ion tests whether  the two opposi te  
surfaces have p r e d o m i n a n t l y  the same mag n e t i z a t i on  or  are mos t ly  
uncorre la ted .  In  this way  one  finds ou t  whether  the system is in a single- 
d o m a i n  state o~ is d iv ided  in to  m a n y  d o m a i n s  with different signs of  the 
magne t iza t ion .  
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In the q-state Potts model 13) each spin can be in one of q different 
states, q = 2 corresponding to the usual Ising model. Accordingly, we now 
check, for the two opposite surfaces of the lattice, which spin state 
dominates one surface and which the other one. If both surfaces are 
dominated by the same state, a counter is increased by 1; if they are 
dominated by two different states, this counter is decreased by I / (q -  1 ). If 
there is no correlation between the two surfaces, the average value of this 
counter thus stays at zero, whereas for well-correlated surfaces due to long- 
range ferromagnetic order, the counter is increased by one unit each time 
it is measured. At the end, we normalize the counter by the number of 
measurements, denoting the result by g--; in the thermodynamic limit, Y- is 
unity for well-correlated surfaces (temperature T<T,.) and zero for 
uncorrelated ones ( T >  T,.), i.e., a step function of T-- T,.. We start with a 
random distribution of spins, wait until equilibrium has been established at 
the given temperature T >  To, then decrease the temperature slightly for a 
new equilibrium situation, and so-on until T < Tc is reached. 

In this form this criterion holds for second-order transitions where the 
correlation length diverges. At a first-order transition, however, the correla- 
tion length remains finite, and thus a multidomain state is possible also 
below the phase transition temperature, if all coexisting states have the 
same energy. This is the case for the q-state Potts model in two dimensions 
if q is larger than 4, and in three dimensions if q is at least 3. We thus 
expect in a simulation below the transition temperature that for a second- 
order transition the normalized counter is close to one for all samples, 
whereas for a first-order transition it is close to zero in some samples and 
close to one in others, for lattice sizes not larger than the correlation 
length. 

The complications inherent to the first-order transition can be avoided 
if, instead of cooling down slowly from a random initial configuration, we 
heat up slowly an initially ordered configuration where all spins are the 
same. Then, below the transition temperature the normalized counter 
should stay near unity, and should jump to zero if we heat above the trans- 
ition temperature. 

We have written a C-language program which stores eight lattices in 
32-bit words, allowing 0 < q <  16. We ran it on PC's for testing in two 
dimensions, and on IBM Powerstations for runs with up to 658 x 658 and 
106 x 106 x 106 spins. Sites were updated regularly; for each Monte Carlo 
updating a new direction for the spin was selected randomly and accepted 
with the usual thermal probability of the Metropolis technique. As we 
adopted periodic boundary conditions, the above-mentioned two opposing 
surfaces of an L • L x L cubic lattice correspond to two parallel planes L/2 
lattice parameters apart from each other. In order to improve the statistics, 
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after each whole lattice sweep (WLS), we average correlations between 
planes i and i+ L/2 for i =  1, 2 ..... L/2 along all three directions, corre- 
sponding to a total of 3L/2 distinct averaged values. 

2. QUALITATIVE RESULTS 

In three dimensions, our data qualitatively confirm our two-dimen- 
sional conclusions to be presented in the next paragraph: for q = 2 (Ising 
model), the transition was found near J = 0 . 2 2  (in units of kBT), and for 
q = 4 near J =  0.15. In the Ising case, at low temperatures the normalized 
counter was unity in all eight simulated lattices. The same applied for q = 4 
only if we started with an ordered phase and low temperatures and heated 
the system up. If instead we cooled down an initially random configuration, 
then some lattices had the normalized counter at or near unity, and the 
others near zero. 

In two dimensions, Fig. 1 shows this behavior for q = 5 on an L x L 
lattice with L = 32: we simulated 16 samples, starting from 16 distinct ran- 
dom spin configurations at high temperatures (low values of the coupling 
constant J in the plot). After 1000 transient and 10,000 averaging WLSs for 
each fixed temperature, we decrease T by a small finite amount and per- 
form another set of 1000+ 10,000 WLSs. Below the critical point, we 
observe that 10 among these 16 samples have become ordered, and the 
average value of the counter is #- = 1 for them. The other 6 samples remain 
disordered, the averaged value of the counter being ~-- ~ 0 for them. Taking 
separate averages for these two sets of samples, we get the two curves 
shown in Fig. 1. They collapse onto each other near the known transition 
temperature corresponding to Jc = 0.234872, both staying at zero for higher 
temperatures (disordered phase). We have not observed any metastability 
effect for both first- and second-order transitions. For instance, we have 
observed no trace of hysteresis by heating or cooling (in this case choosing 
only ordered low-temperature samples) the same system. 

As explained above, the behavior observed in Fig. 1 is expected for 
first-order transitions. Nevertheless, it is dangerous to adopt this criterion 
in order to determine whether a given phase transition is first or second 
order. For instance, we get the same qualitative behavior for q = 3 and 4 
in two dimensions, for which the transition is known to be continuous, by 
using the same parameters. In the latter case, this is only a transient-time 
and finite-size effect, and one can get all samples ordered at low tem- 
peratures simply by taking longer transient times and larger lattice sizes. 
However, the computer power actually needed to draw such a distinction 
may become prohibitively high. Thus, our criterion to determine the 
character (continuous or first-order) for a given phase transition is another 
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Fig. I. Surface correlation $- versus coupling constant J for 32 x 32 lattice and q=5.  
Simulations start from 16 distinct random spin configurations (samples) at a temperature well 
above the critical point (at left on the J axis). Diamonds correspond to the average over 10 
samples which showed ~- = 1 below the critical temperature, while bullets correspond to the 
remaining 6 samples which present f ~ 0. For these, the observed peak comes from the large 
value (although finite) of the correlation length near the transition point. Both curves collapse 
near and above the critical temperature (crosses). 

quan t i t a t ive  one,  based on  the magne t i c  critical exponen t  a j  to be  
expla ined below. 

3. THE  M E T H O D  

The surface cor re la t ion  func t ion  ~ -  has a l ready been defined. The  b u l k  
quan t i ty  .~ is defined as the average of  an o t h e r  counter ,  as follows. First ,  
one  mus t  adop t  a privi leged state a m o n g  the q possible  spin o r i en ta t ions  
(this co r responds  s imply to choos ing  a par t i cu la r  o r i en ta t ion  of  an  external  
magne t ic  field). F o r  a given latt ice spin conf igura t ion  we de te rmine  
whether  the ma jo r i ty  of  spins are in this privi leged state (set t ing the coun -  
ter equal  to 1) or  in an y  o ther  state [ se t t ing  the coun t e r  equa l  to 
- 1 / ( q  - 1 ) i n s t ead ] .  We  define .~ as the average of  this counter .  F o r  q = 2, 
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this corresponds to taking the average of  the sign of  the sum of the Ising 
spins + 1, according to the original definition. (~'2) 

Our  method is based on these two thermodynamic quantities Y-- and 
,~ which are shown tl' 2) to scale as L ~ at the critical temperature and in the 
thermodynamic limit, where L is the linear size of the system. So, they 
behave like Binder's fourth-order cumulant  (4~ or the Nightingale ratio 
(correlation length over strip width), (5) or yet the Ziff percolation spanning 
probability, t6) being step functions of  the temperature T, in the ther- 
modynamic  limit. Concerning the phenomenological  RG, tS) it has been 
shown tT) to be a particular case of  our method if one computes ~-- using 
lattices with the same strip geometry. However, these functions ~-- and Q 
have the further advantage of  also describing correctly the critical behavior 
around T = 0 and T ~ o0, including the effects of an external magnetic field 
H as well. For  instance, according to the definition of Q, one can obtain 
exactly the low-temperature scaling behavior H ~ l ~ for ferromagnets, the 
first-order character signature of the reversing field transition below the 
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Fig. 2. Exactly known values of the critical coupling Jc and thermal and magnetic exponents 
v and ~ as functions of q, for the two-dimensional Potts model. For q > 4, one gets ~ = D = 2 
according to the first-order character of the transition. 
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critical temperature, where 1 is the RG length scaling factor. Also, one 
obtains H ~  l ~ at high temperatures, the signature of  the lack of  long- 
range order above the critical temperature. On  the other hand, in zero 
field, the function ~'- gives the correct scaling behavior J ~ l  ~  at low 
temperatures. The function .~ is based on a bulk measure of  the majority 
of  spins, whereas 9-" measures the correlation between two opposite 
surfaces of  the system. 

The magnetic exponent ~J is obtained through the finite-size scaling 
relation M ~  L ~'r valid at the critical temperature, where M is the bulk 
magnetization. For  the Ising model, M is simply the average of the 
absolute value of  the sum of all spins. (1' 2~ For  general q on a fmite lattice 
with N spins, one must  first determine the state of  the majority of  the spins 
for the current configuration and count  the number  m of  these majority 
spins. Then, the value of  M will be the average of m -  ( N - m ) / ( q -  1). 
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Fig. 3. Data collapsing plots of ~" versus L'/"(J-Jc), taken for (a) q = 2 and (b) q = 6 on 

two-dimensional lattices of linear sizes L = 26 (triangles) and 34 (circles). The error bars are 

smaller than the symbols. 
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Fig. 3 (continued) 

For a first-order transition, this quantity M clearly scales as L ~ where 
D is the geometrical dimension of the system. Thus, one can extend the 
definition of the magnetic critical exponent ~ even to first-order trans- 
itions. On the other hand, the thermal critical exponent v which governs 
the divergence of the correlation length cannot be defined in those cases. 
Figure 2 shows the q-dependence of the critical coupling Jc and the 
exponents ~ and v, known for the two-dimensional Potts model. (31 We 
performed continuous-q analytic calculations, for small lattices, which 
showed a clear tendency of the magnetic exponent ~ to reach a plateau for 
increasing values of q, mimicking the correct behavior of Fig. 2, but 
without the jump at q = 4 .  These preliminary results motivated us to 
simulate larger lattices. 

The critical coupling Jc and the thermal exponent v can be obtained 
by plotting the function #- against LWV(J-J,.) for different linear lattice 
sizes L in zero field. The parameters Jc and v must be adjusted in order to 
collapse all data onto the same curve. The result is shown for the two- 
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dimensional Ising model in Fig. 3a. One can note the good accuracy 
obtained with a small computat ional  effort. Values obtained for larger lat- 
tices also collapse onto this same curve, but we decided to plot only data 
corresponding to the two smallest lattice sizes simulated, in order to show 
that one has no need of  much computer  power. We have chosen the correct 
known value v =  1 and adjusted Jc=0.4407,  also coincident with the 
correct known value. Any deviation on the fourth decimal clearly gives a 
poorer  collapse. Similar accuracy is also obtained for q = 3, 4, 5, and 6 in 
two dimensions, with the same modest computat ional  effort. In the cases of  
q = 5 and 6, the curves present an almost vertical jump near the transition 
point, and one can extract Jc without resorting to data collapsing. 
Nevertheless, we obtain also a good collapse for these cases where the ther- 
mal exponent is not  defined, adopting the value v = 2/3 corresponding to 
q - - 4  (the collapse is not  much sensitive to this artificial value). The case 
for q = 6 is shown in Fig. 3b. 

The magnetic exponent ~ is obtained by further simulations at J~, 
measuring the value of  M for different linear lattice sizes L. Figure 4 shows 
the results for q = 5 in two dimensions. The straight line confirms the 
expected scaling relation M ~  L ~, with ~ = 1.997 in this case, correspond- 
ing to an error less than 0.2 % relative to the first-order value ~# = D = 2. 
For  q = 6 ,  we obtained ~ =2.010. Two-dimensional Potts model simula- 
tions are normally used as tests for methods conceived to determine 
whether a given transition is first or second order, and we are aware of  this 
kind of work (see, for instance, ref. 8) for at least q = 7 and upward where 
the first-order character is already well defined. The good results we 
obtained for q = 5 and 6 give confidence in the present method. Another 
very good test is the three-dimensional Potts model for q = 3, known to 
suffer a weak first-order transition, staying very near the borderline from 
second order. F rom our simulations we get ~ = 2.97, with a similar modest 
computat ional  effort to that employed in two dimensions. 

The second-order transitions for q = 2, 3, and 4 in two dimensions 
seem to need more computat ional  effort in order to yield the same degree 
of  accuracy in determining ~ .  We get ~ = 1.86 for q = 2 (statistical errors 
are always in the last displayed digit), to be compared with the known 
value o~ = 1.875. For  q = 3, our  value ~ = 1.93 must be compared with 
~ / =  1.867. Even with this poorer  accuracy, our  data are safe enough to 
guarantee that ~ < D in both cases, confirming the continuous character of 
these transitions. For  the borderline case q = 4 ,  we get q / =  1.997, to be 
compared with a# = 1.875. The q = 4 case is indeed problematic, not  only 
for the present method, but for all other numerical methods, because it is 
known to present very strong logarithmic corrections to the simple scaling 
power laws. Moreover,  in Fig. 2 one can note the gap between a# = 1.875 



Finite-Size Scaling for First-Order Transitions 1441 

i000000 

I00000 

10000 

i000 

100 

I 0  

' ' ' ' ' ' ' ' 1  ' ' ' ' ' ' ' ' 1  

i00 I 0 0 0  

L 
Fig. 4. Plot of the bulk magnetization M versus linear lattice size L, measured at the critical 
temperature, for q = 5  in two dimensions. The slope of the straight line is the magnetic 
exponent ~.  

and ~ = 2 occurring just  at this borderl ine q = 4. Our  result for q = 4 
reproduces very well  the correct one  for q = 4 + e. tg~ 

In conc lus ion ,  the a lgor i thm of  ref. 1 seems to work  also for first-order 
transitions,  being very accurate also in these cases. 
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